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ABSTRACT
Segment Anything Model (SAM) is a transformer based model for
natural image segmentation. It was developed to be a foundation
model that can easily generalise to tasks it was not specifically
trained on. However, SAM’s zero-shot performance on tumour
segmentation is below that of pre-trained state of the art mod-
els. This paper investigates the use of low rank adaptation (LoRA)
to efficiently train SAM for tumour segmentation. Experiment re-
sults show improved segmentation accuracy after applying LoRA.
This represented by a change in Dice-Cross Entropy loss on the
validation set from an initial value of 0.1 to a minimum of 0.02
with rank-64 adapter layers fitted to the image encoder. However,
this performance increase was fairly inconsistent across ranks and
Dice scores could not be reliably calculated for all models. Further
experiments are required for a solid conclusion.
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1 INTRODUCTION
Semantic image segmentation is the grouping of related image
pixels into meaningful regions-of-interest. This creates a detailed
understanding of the image scene and the features it contains. Real
world applications of semantic segmentation are found in fields
like robotics, satellite imaging, medical imaging and retail shopping
[13]. This paper focuses on segmentation for tumour detection in
medical imaging.

A wide array of of machine learning models are capable of se-
mantic segmentation. Meta’s Segment Anything Model (SAM) [8]
is one such creation that excels at image segmentation. Its trans-
former architecture makes the model robust enough to perform
well on tasks it did not specifically train for. Several researchers
have compared SAM’s zero-shot performance on medical data to
that of state of the art segmentation models like U-Net and BEAL
[1, 11? ]. The results of this research show SAM unable to replicate
its performance from natural image segmentation. A number of
medical focused SAM variants have been successfully fine tuned.

There are primarily two ways of fine-tuning. Full fine-tuning
involves training all parameters in a model to help it capture new
data.. The alternative is parameter efficient fine-tuning (PEFT). Only
a subset of all available parameters are trained on the new data.
Careful selection of what parameters to train can help improve
model accuracy while avoiding the performance costs of full fine-
tuning. This paper investigates the effect parameter efficient fine-
tuning has on SAM’s accuracy when applied to medical image
segmentation.

The transformer architecture is common among large language
models (LLMs). This led us to investigate methods of PEFT used
in LLMs when deciding how to fine-tune SAM. Chief among these

was the concept of low rank adaptation (LoRA). Here, a model’s
pre-trained parameters are kept constant during training. New pa-
rameters are instead added and trained in parallel to the existing
ones. A large enough set of LoRA parameters is said to be capable
of fully capturing the additional context of the training examples.
A major part of the research was implementing low rank adap-
tation on SAM and comparing performance with different LoRA
configurations.

This paper aims to investigate how adding low-rank adaptation
to SAM affects it’s performance on brain tumour segmentation.
The coming sections start with an explanation of how SAM is
currently used for both medical and natural image segmentation.
This is followed by a look into how LoRA is used for efficient
fine-tuning. Having presented this background information, we
proceed to describe the experimental design and implementation
of LoRA used. Using these experiment results, we intend to answer
the research question of "Can adding LoRA layers to a pre-trained
SAM improve its intracranial meningioma segmentation performance
on brain MRIs, compared to the baseline SAM performance on the
same task?".

2 BACKGROUND AND RELATEDWORK
2.1 Transformers and SAM
Transformers were first proposed by Vaswani et al. [14] for natural
language processing. They ditch the recurrent layers of traditional
neural networks for a combination of feed-forward and attention
layers. This motivated the development of Vision Transformers
(ViT) [3] for general image processing tasks. A ViT is a trainable
block used to encode images as sets of contextualised embeddings.
The richness of these feature representations makes them useful for
downstream tasks. Three main transformer configurations were in-
vestigated by Dosovitskiy e.t. al: "base" (ViT-B), "large" (ViT-L) and
"huge" (ViT-H). Each differs in parameter count which translates
to the level of context they can capture. Having more parameters
makes it easier for long-range dependencies between features to
be extracted. However, this increases computing costs as more cal-
culations are required. A trade-off between accuracy and inference
time must be made when selecting a configuration.

SAM is a promptable foundation model for natural image seg-
mentation. It was designed with an emphasis on zero-shot transfer
[8]. This entails a model being applied to a task it received no train-
ing on while maintaining performance. A key factor making this
transfer learning possible is the use of a transformer based masked
auto-encoder[4] in SAM. The image embeddings it generates are
input along with a segmentation prompt to a mask decoder. A full
representation of this flow is given in Figure 2.

Variants of the three ViT configurations suggested by Dosovit-
skiy et. al were implemented as image encoders. Maintaining the
"base", "large", "huge" naming scheme, these were pre-trained on a
large dataset for SAM. SAM was accompanied by its large training
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Figure 1: Overview of Vision Transformer showing conver-
sion from 2D image to contextualized embeddings (source)

Figure 2: Flow of input through each component of SAM
during segmentation. (source)

dataset, SA-1B. Included in the dataset are >1 billion segmentation
masks from >11 million high-resolution images [8].

2.2 Medical SAM
Ma et. al [10] performed highly influential research on applying
SAM to medical imaging. They developed MedSAM, a foundation
model for medical image segmentation. It achieves this using a
collection of over a million masked pairs from different anatomi-
cal structures and modalities. Having such a diverse training set
improves the model’s zero-shot transfer. It however requires long
pre-training sessions. Several task-specific models have been devel-
oped from MedSAM. It is also used as a benchmark for many more
models [6, 15].

Wu et. al [15] designed Med-SA to improve on MedSAM. This
model introduces a Space-Depth Transpose (SD-Trans) technique.
With this, the input spatial dimension is transposed to the depth di-
mension. Doing so allows the same self-attention blocks to process
different dimensional information given different input. As a result,
after slicing a 3D image into 2D representations, the information
learned from adjacent slices can help improve the segmentation of
the current slice.

A different approach was taken by Zhang and Liu [16]. LoRA
layers were added to the image encoder. In doing so, pre-trained
encoder weights were kept frozen. Fine-tuning instead relied on
updates to the prompt encoder, mask decoder and the low rank
matrices of the added LoRA layers. The modified SAM was able to
reach an impressive Dice score of 81.88 on the Synapse multi-organ
segmentation dataset.

2.3 Low-Rank Adaptation (LoRA)
Adapters are compact, trainable layers that can be added to machine
learning models. These allow for parameter efficient fine-tuning of
pre-trained models by reducing the number of trainable parameters.
The standard adapter, as studied by Houlsby et. al. [5], is placed in
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Figure 3: Visualisation of A and B matrices used in LoRA
(source)

series with the other blocks of a model. The non-adapter parameters
are kept constant (frozen) while adapter parameters are sequentially
updated as input passes through the model. A downside to this
approach is the increased model depth from adding the parameters
in series. Every adapter layer added to the model increases the
time it takes the to generate predictions from a given input. This is
known as inference latency.

LoRA is an alternative approach capable of eliminating this la-
tency . It follows the same procedure of updating the added adapter
layers while freezing pre-trained parameters [7]. The key difference
lies in adapter placement. LoRA adapters have no inference latency
as they are placed parallel to the parameters being fine-tuned.

Rank refers to this shared dimension between an ordered pair of
matrices. The full set of pre-trained weights, W, can be expressed as
a single d_in x d_out matrix. Low rank approximation decomposes
this matrix into an equally representative pair of smaller matrices,
A (d_in x rank) and B (rank x d_out) as shown in Figure 3. The
dot product (A.B) of the matrices returns a matrix with the same
dimensions as the set of pre-trained weights.

Evidence suggests that a reduction in parameters is not always a
good thing [7]. Significant computational savings are made possible
by only training these smaller A and B matrices. Changing the
rank used during decomposition alters the sizes of A and B. A
model’s ability to capture complex, task-specific patterns is called its
representational power. This is often proportional to its parameter
count. Only training small sets of parameters therefore limits the
complexity of tasks that can be learned. Effective LoRA therefore
requires a balance between cost saving and representational power.

3 DESIGN AND IMPLEMENTATION
3.1 Data Selection and Evaluation
The selection of a suitable dataset was required before any exper-
imentation could take place. Factors like the amount of training
data, the availability of annotations and the presence of comparable
models were used to motivate the selection.

This led to the BraTS 2023 Meningioma Challenge dataset being
used for experimentation. It offers a standardised benchmark with
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the largest collection of multi-label expert-annotated meningioma
mpMRIs to date [9]. A total of 1000 MRIs are provided but only 880
were annotated with ground truth masks. These annotated samples
were partitioned as 680 for training and 200 for validation. Each
sample contained five distinct images. These consist of four images
from different scan types (t1n, t1c, t2f, t2w) with the fifth image
representing the ground-truth segmentation mask.

Our focus is on segmentation accuracy. Dice scores will be used
to express this accuracy. The Sørensen-Dice coefficient [2] compares
the intersection of samples to the sum of the constituent samples
and expresses the result as a percentage. In our case, we will be
comparing ground-truth masks (y) and the predicted masks (ŷ) for
each model.

𝐷𝑖𝑐𝑒 (𝑦,𝑦) = 2|𝑦 ∩ 𝑦 |
|𝑦 | + |𝑦 | (1)

𝐿Dice (𝑦,𝑦) = 1 − 2|𝑦 ∩ 𝑦 |
|𝑦 | + |𝑦 | (2)

Another metric used for training was the binary cross-entropy
loss. This makes a pixel level comparison between the model pre-
dictions and ground truth outputs

𝐿CE (𝑦,𝑦) = 𝑦 [𝑦𝑙𝑜𝑔(𝑦) + (1𝑦𝑦)𝑙𝑜𝑔(1𝑦𝑦)] (3)

A weighted average of the two losses, called the Dice-CE, was used.
𝐿Dice-CE = [𝑤𝐶𝐸 ∗ 𝐿CE] + [𝑤𝐷𝑖𝑐𝑒 ∗ 𝐿Dice]

(4)

3.2 Preliminary Experiments
A preliminary experimentation phase was used to compare possible
approaches for model fine-tuning. This begun with the full fine-
tuning of SAM on the chosen dataset. The goal of this was to
create a baseline for what performance improvements were possible.
The image encoders packaged with SAM do not accept 3D input.
Each sample volume was instead horizontally sliced to generate 2D
representations as shown in Figure 4. Initial training used every
tumour containing slice of the image. Training continued for a total
of 150 epochs but the best performance was seen in epoch 125. This
is the SAM checkpoint that was used as a baseline for evaluation.

Figure 4: Illustration of the human brain with the transverse
anatomical plane highlighted. (source)

Further experiments helped determine the method used when
feeding samples to the modified model. Alternative encoders ca-
pable of handling the multidimensional nature of the MRIs were

Figure 5: System architecture used during final training. Pre-
trained encoder and decoder parameters are kept constant
while only the adapter layers are fine-tuned.

looked into [12, 15]. During this step, we attempted to replace
SAM’s image encoder with the space-depth encoder used in Med-
SA [15]. This change in architecture proved too complex to imple-
ment in the limited time-frame. The alternative approach of slicing
the images to create 2D representations was adopted. Slices were
taken along the transverse plane as shown in Figure 4.

An investigation into data batching was also performed. SAM is
capable of making simultaneous predictions using batched input im-
ages and prompts. Proper utilisation of this feature had the potential
to reduce operational overheads and increase model throughput.
Hardware constraints however hindered this approach. Only a
small amount of the allocated memory was left available during
the prediction stage. This meant no meaningful batching could be
achieved.

The standardised nature of images across scan types introduces
a level of redundancy. Images for the same scan type and those
from different scans of the same sample would be highly similar.
A comparison of model performance when trained on varying
numbers of slices was used to measure these possible redundancies.
Four slicing approaches were compared: full volume of slices, every
second slice, a random sample of slices and the slice with the largest
tumour area (max-slice).

3.3 Final Implementation
Figure 5 illustrates the final model configuration used for experi-
ments. A ViT-B image encoder was used as it was the most light-
weight with short training times. This image encoder was modified
with LoRA layers being added to every attention block. The rank
of these LoRA was kept as a variable. Only the LoRA weights were
updated during training with all other model parameters kept con-
stant.

3.3.1 Pre-processing. In line with the preliminary approach, image
slices were taken along the transverse plane for each MRI scan
type. The different slicing methods investigated all made a trade-off
between speed and accuracy. However, the difference in speeds
was more pronounced. It was decided to slice the image using the
max-slice technique. This offered the fasted inference during model
training with only a moderate sacrifice in potential improvements.

Centre cropping was implemented to reduce the amount of bor-
der pixels in each dimension. This removes irrelevant data while
maintaining image quality. The desired dimensions were found by
concatenating all the training images and generating a bounding
box around the combined images. It was reasoned that the dimen-
sions of this box would would equal the minimum dimensions

https://www.visiblebody.com/blog/Anatomy-and-Physiology-Anatomical-Planes-and-Cavities


Fine Tuning SAM Through Low Rank Adaptation (LoRA)

required to fully capture the brain in any given image. Through
this process, we found a cropped size of 138 x 202 to be the most
appropriate.

The pixel values in each image were also re-scaled to fit a stan-
dard normal distribution. This was adopted following best-practices
in machine learning. By normalising the input, the total variance is
reduced. A result of this is outliers in the data, like high-intensity
tumour pixels, become easier to identify.

Further image resizing was necessary before any embeddings
could be generated. The image encoder uses a standardised input
where longest side of the input must be exactly 1024 pixels. Each
slice was thus up-sampled to be 700 x 1024.

A degree of pre-processing was required for the ground truth
masks as well. The same slicing, resizing and centre cropping oper-
ations used on the image scans were applied to the masks. However,
pixel standardisation was replaced by thresholding. This generated
binary masks with each pixel marked as either a tumour (1) or
non-tumour (0). Bounding box prompts for mask prediction were
also generated during this pre-processing step.

3.3.2 Model Training. The model processed the slices from the dif-
ferent scan type sequentially. Each pre-processed slice was passed
to the modified LoRA-encoder and used to generate image embed-
dings. The box prompts from the ground truth masks were then
converted into embeddings within the prompt encoder. These two
embeddings were used by the mask decoder to generate predictions
for each slice. Separate predictions from the different scan types
were combined to form an aggregate prediction at the index of the
slice being considered. This combined mask was compared to the
ground truth mask for optimization.

Figure 6: Bounding boxes with generated segmentation
masks across the different scan types for one image

The Adam optimizer was used to train the modified SAM. Adam
uses the gradient of a loss function with respect to the parameters
being optimized to determine how much to update each parameter
by. To train the LoRA weights, the optimizer was fit using the image
encoder parameters. Equation 4 served as the loss function.

3.3.3 Validation. Model performance was evaluated using the sep-
arate validation set. During validation, predictions were made for
every tumour containing slice of the image. The prediction quality
calculated according to Equation 4

The LoRA adapter used are referenced as LoRA_Rank. For ex-
ample, LoRA_64 is a LoRA layer with rank 64.

4 RESULTS AND DISCUSSION
The first experiment performed using the modified SAM was to in-
vestigate the effect of rank on the initial performance of the model.
This was done by comparing the training loss when LoRA layers

of ranks 64, 128 and 256 were added. Figure 7 shows the largest
performance change was from rank 128 adapters. Losses reduced
from 0.3 to 0.17. However, the lowest average losses came from
LoRA_64 with a maximum of 0.14 and minimum of 0.06. The loss

Figure 7: Plot showing change in training loss with different
ranks of LoRA adapters

values observed in LoRA_64 and LoRA_256 display unexpected
patterns. Training loss is expected to reduce over time. Though
there are slight drops below the initial loss value, these configu-
rations display high levels of stagnation. These are periods where
the loss remains relatively constant over time. The most prominent
of these is in-between epochs 4 and 8. During this period, both
configurations have training losses higher than their initial losses.
This could be the result of the loss function descending into a local
minima. However, similar results could be observed when training
parameters are incorrectly configured.

Figure 8 takes a deeper look at the performance of LoRA_64.
The model was trained over 50 epochs with validation performance
being calculated calculated every two epochs. The first 33 epochs
display very positive results. Despite some possible spikes from
noise in the data, a general decrease from 0.3 to 0.05 is observed
in the data. Validation loss also sees a general decrease from 0.08
to 0.03. However, both losses begin to increases from the 34th
epoch onwards. The initial downward trend in model performance

Figure 8: Performance of model with LoRA_64

lent some credibility to the optimisation procedure used but more



Tapera Chikumbu

Figure 9: Plot of Dice scores for different configurations of
SAM

scrutiny was required. Over-fitting is normally marked by a reduc-
ing training loss while validation loss increases. The lack of early
stopping during optimization however means it is still a possibility.

Finally, using the Dice score to compare model performance was
inconclusive. The Dice scores of the LoRA models completely dete-
riorated when compared to models without LoRA. This is evident
by the distribution of values in Figure 9

5 CONCLUSIONS AND FUTUREWORK
SAM modified with LoRA adapters is able to be trained for better
performance on tumour segmentation. However, performance com-
parisons between the vanilla SAM baseline and SAM with LoRA
could not be reliably calculated

Further experimentation with different ranks of adapters and
finer hyper-parameter tuning would allow more light to be shed
onto the situation.
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